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REVIEWER COMMENTS

Reviewer #1 (Tumor immunology, scRNAseq) (Remarks to the Author): 

In Zhang et al, the authors describe MetaTiME, a framework for assessing the TME where large 
datasets across studies were integrated to learn components of the TME. The integration and 
establishment of the metacomponents (MeCs) that represent signatures in the aggregate data are 

interesting, and the ability for a potential user to map their own data onto the MeCs could be very 
useful. The study itself could use some additional analysis and clarifications and generally would 

benefit from additional head-to-head comparisons with other methods currently used to accomplish 
similar tasks (or portions of tasks within the MetaTiME framework). 

Comments: 

The authors perform their integration, yet there is no comparison to other dataset integration tools. A 
comparison to CCA for cluster identification would be useful. I recognize that the goal here is slightly 

different in that signatures are being pulled out, but ultimately it is quite similar. A more detailed 
portrayal of which ICs are present and in which studies would be useful as well. 

More detail should be provided in the main text regarding the IC filtering (lines 110-111), also which 
graph clustering algorithm? (put in main text that it is Louvain) 

Again a comparison of the annotated cell states using MetaTiME vs something like CCA->clusters is 
important. Why is MetaTiME better than taking all these datasets, integrating, calling clusters, and 

finding top marker genes for each cluster? I believe the authors can make a compelling case, but that 
case needs to be made by performing direct comparisons versus discussing theoretical differences in 

the framework alone. 

The comparison using Seurat->CIBERSORT, etc… for cell type annotation is useful for annotation of 
de novo datasets. It would also be helpful to include some metrics as opposed to qualitative 
observations (eg “higher-resolution”). However, was the Yost et al dataset used in the integration and 

training of the MeCs? If so – this needs to be redone with that dataset removed. Ideally a full leave-
one-out analysis would be the best option in order to show performance on multiple datasets when 

those are not used in the training set. (If Yost et al was indeed excluded from the training dataset, it 
should eb directly stated in the text) 

The above comment also goes for the ICB analysis. While there is value in assessing all data 
together for better understanding ICB; using a leave-one-out to assess performance on de novo 

datasets would be valuable proof-of-principle of MetaTiME as a tool for annotation and assessment of 
new datasets. 

In the myeloid metabolic section – this is also in the void of any comparison to other methodologies 
(e.g. integration and clustering using standard methods). If the focus is the tool itself, then the tool 

needs to be directly compared to other methods and show benefit. The biology uncovered is 
interesting and there is novelty in the integration of such a large set of studies, but there is currently 

no direct evidence that it could not have been done using standard approaches. 

Minor: 

Line 57 – typo – “approach is TO use”, sentence is a bit long. Maybe just “Another approach is to map 

a dataset containing unannotated cell states onto an annotated reference” or something like that. 

Lots of text in the figures is too small 



Reviewer #2 (Machine learning, computational analysis) (Remarks to the Author): 

In their manuscript "MetaTiME: Meta-components of the Tumor Immune Microenvironment", Zhang et 
al. describe a novel tool for studying the tumor microenvironment in single-cell RNA-seq data. 

Studying the TME is of great importance to understand the response of the immune system and to 
inform about immunotherapy and treatment response. Single-cell RNA-seq data offer a wealth of 
information about the TME but a bottleneck in the analysis is the annotation of individual cell types 

and cell type clusters. While a plethora of methods exists for cell type annotation these can only offer 
crude annotations and rely on pre-defined marker genes, neglecting most of the cell-type-specific 

information of the transcriptome. With every new data set, the annotation task begins anew which is 
why efforts of integration and joint annotation with tools such as Harmony or scVI offer a joint 

embedding where cell clusters can be uniformly annotated. An limitation of this approach is that the 
embedding is typically started from scratch whenever a new dataset is added. The aim of MetaTiME 
is thus to obtain a stable embedding in which new datasets can be easily projected, thus simplifying 

the annotation of cell types in the TME. Second, MetaTiME strives for offering insights into fine-
grained cell types going beyond classical coarse annotations, e.g. going beyond M1 and M2 subtypes 

for macrophages. A third aim is to offer a functional readout, giving insights into the activity of these 
fine-grained cell types in different data sets and tumor types. MetaTiME achieves these goals in a 
simple and elegant fashion. First, a large number (1.7 mio) of single-cells from 79 datasets spanning 

different cancer types has been collected. Malignant cells have been removed to focus on cells in the 
TME. The remaining cells were integrated using independent component analysis (ICA) which the 

authors found to outperform non-negative matrix factorization. ICA has the advantage that it delivers 
feature weights for each gene contributing to a component which allows measuring similarity of the 
components. IC vectors of individual data sets are z-scored and skewness aligned to become 

comparable. Subsequently, these are clustered to remove redundancy and to obtain a cross-data-set 
representation. This was achieved using the Louvain method where scores were aggregated with the 

mean gene scores to obtain a final set. With the z-scores the resulting components are easily 
interpretable by looking at top-scoring genes or by performing GSEA. New data sets can be projected 

(after clustering) into this space by computing the dot product of the gene expression values and the 
z-score weights of the components which is an elegant way of obtaining an annotation. The authors 
show in simulations and across multiple data sets that MetaTiME offers good interpretability (also by 

adding insights into regulating transcription factors through the LISA method) and a good resolution 
on cell types (and subtypes) relevant for understanding the TME. The manuscript is well written and 

easy to follow. The method is straightforward but innovative and a great addition for the community. I 
have only few comments: 

#Major: 
- MetaTiME offers differential signature analysis (difference of MeC component activity between 

conditions). However, it is not clear if differential abundance analysis is also supported (this would be 
going back to counting individual cells after annotation). This may be useful since the (relative) 
abundance of cell types is an important factor. 

- Most steps needed to reproduce the method are clearly explained but the GSEA analysis lacks 
details. It is not clear which exact method was used (incl. details such as the background used). I also 

wonder why only the first 100 genes were considered as GSEA naturally considers the ranks of all 
genes (in contrast to gene set overrepresentation analysis / hypergeometric test which is sometimes 

also called GSEA and should not be confused). 
- To be honest I did not understand the part of the skewness of the scores. Skewness in one direction 
apparently informs about the directionality of the underlying function and the associated genes. At 

least I (probably others) would benefit from a supplementary figure where this is shown for a few 
selected examples. 

- For future research it would be an interesting perspective to check if the components infered in 
MetaTiME could be used as a source of signatures for the deconvolution of bulk RNA-seq data into 
more fine-grained cell types. 



Reviewer #3 (scRNAseq, systems biology) (Remarks to the Author): 

Zhang et al. develop MetaTiME, a pan-cancer reference set of cellular identities and states for tumor 
microenvironment which can be used to annotate new datasets with continuous scores. 

This is an area of active research and the general concept brought forward by the authors, while not 
entirely novel conceptually is enticing. 
The manuscript is clearly written and the authors provide well written, documented and working 

software implementation. 
However, I have a few concerns about the interpretation of the latent variables discovered by the 

authors across TMEs, and on how generalizable the method is for broad use by new users. 
Below I provide a series of inquiries and recommendations to the authors that hopefully will help 

improve the manuscript: 

# On the methodological approach: 

- The authors show that MetaTiME provides more resolved cell labels for an existing dataset which I 
assume is also used in the ICA training of the meta-components. One issue with that is that given 

enough time or effort, the authors of the original dataset could likely have generated a similarly 
granular annotation as well. In order to demonstrate the usefulness of MetaTiME in annotation of a 
broad set of tumor data, I propose the authors work with data that has not been seen for training. This 

could be accomplished by cross validation in a leave one cancer out strategy, in which all but one 
cancer type is used in training and then the left out cancer is annotated for the first time. The scores 

for TME cells in that held out cancer can then be compared with the scores in the fully trained model 
for evaluation, and this done for every cancer type. A second approach would be that the authors 
either generate data from a new cancer type or use a yet unused dataset from a novel cancer type for 

this purpose. I belive this would be important to demonstrate the usefulness of MetaTiME in 
annotating datasets in a much more real situation for new users. 

- The authors claim batch effects are negligeble by requiring MetaTiME meta-components to have 
samples from more than one batch. This is a positive step, albeit a relatively weak one as it does not 

guarantee that the sample structure in or across datasets is still not confounded by non-obvious 
sample groupings or even incorrect experimental designs in the original datasets. Could the authors 
explicitely compute the enrichment of difffernt batches for each dataset in each meta-component, or 

complementarily do diffrential testing of meta-component scores between batches? This would 
reinforce that the discovered components reflect biology and not technical artifacts. 

- The authors provide no systematic validation of their interpretations of the meta-components, but 
however chose to give ample specific examples of genes enriched in signatures as justification for 
naming meta-components. While there is value in mentioning specific examples, the lack of a very 

systematic comparison of the proposed annotation for the metaclusters prevents the reader from 
assessing how good (or not so good) in general the provided interpretation is. It would therefore be 

great to assess how well the author's interpretations of the components' weight matches literature. 
One way could be for example to take the top N terms from each component and doing enrichment 
analysis with Enrichr for gene set libraries related with cell types, pathways, transcriptional regulators, 

and providing the relative enrichment in all of these as an additional tensor of information to be 
explored by the users of MetaTiME, and presented as validation of the manual annotation by the 

authors by observing how often each chosen term is recovered in the top enriched terms. In addition, 
it would be better if the nomenclature of the components were more systematic for example by always 

having first a broad cell type name, then a specific cellular state, as well as standardizing the 
capitalization and abbreviation (for example by not using abbreviaions) of the meta-components. 

# On data availability and software implementation: 
- Thank you for making the software freely available to everyone. 

- I commend the authors for the clearly documented software and availability of Jupyter notebooks 
exemplifying the usage of the software. 
- Please make sure to make available the preprocessed datasets used in creating the TME reference 

as well in a publicly acessible database (e.g. Zenodo) to enhance reproducibility of the manuscript 
and reuse of resources across the community. 



# On the figures: 
- Figure 3d is not mentioned. 



 
RESPONSE TO REVIEWER COMMENTS 

 
Point by point responses to the reviewers’ comments on “MetaTiME: Meta-components of 
the Tumor Immune Microenvironment” are included below (reviewer comments in blue, 
our responses in black).  
 
 
Reviewer #1 (Tumor immunology, scRNAseq) (Remarks to the Author): 
 
In Zhang et al, the authors describe MetaTiME, a framework for assessing the TME where large 
datasets across studies were integrated to learn components of the TME. The integration and 
establishment of the metacomponents (MeCs) that represent signatures in the aggregate data 
are interesting, and the ability for a potential user to map their own data onto the MeCs could be 
very useful. The study itself could use some additional analysis and clarifications and generally 
would benefit from additional head-to-head comparisons with other methods currently used to 
accomplish similar tasks (or portions of tasks within the MetaTiME framework). 
 
We thank the reviewer for carefully reading our manuscript and pointing our areas where it 
might be strengthened. We have made the requested comparisons (details provided below). 
 
Comments: 
 
1. The authors perform their integration, yet there is no comparison to other dataset integration 
tools. A comparison to CCA for cluster identification would be useful. I recognize that the goal 
here is slightly different in that signatures are being pulled out, but ultimately it is quite similar. A 
more detailed portrayal of which ICs are present and in which studies would be useful as well. 
 
We thank the reviewer for the suggestion to compare MetaTiME to CCA-based signature 
extraction. We first attempted to use CCA to include as many datasets as possible using the 
maximum memory available in our computing resource. On a server with 150GB memory, CCA 
would run out of memory on only 10 datasets, crashing after 3 days. We thus turned to scanpy, 
using harmony to integrate as many datasets as possible, where the maximum number of 
datasets integrated can reach 21 successfully. Using the 21 datasets with highest number of 
TME cells, we generated signatures to compare to MetaTiME. 
 
We have included a new supplementary figure for this test (Fig.S6). As shown in Fig.S6a, the 
batch effects from different datasets can be corrected by Harmony integration. We then 
performed Leiden clustering on the integrated map. For fairness of comparison, to reach a 
similar number of signatures as MetaTiME MeCs, the clustering resolution was tuned to achieve 
90 clusters (resulting in a parameter value of 4). We then performed differential expression 
using the default Wilcoxon test and obtained a list of “Cluster DE signatures” (Fig.S6b). Each 
Cluster DE signature is a full vector of per-gene log fold change comparing the corresponding 
cluster to all the rest cells in other clusters, for all 10702 genes.  
 
We compared MetaTiME MeCs to the Cluster DE signatures projected on the test data using 
the same basal cell carcinoma (BCC) dataset as was used in the original submitted manuscript. 
This dataset was never seen in the training step from either method. As the gold standard of cell 
states is not available, we assume that a good set of cell state signatures learned from training 
datasets is more cluster-specific rather than evenly distributed across all cells when projecting 



on a testing dataset. The specificity can be quantified by calculating the entropy of mean 
signature values across cell clusters in test dataset. This analysis assesses the unevenness of 
the signature score distribution among clusters in the test dataset. 
 
We grouped cells from the test BCC data into 25 clusters with regular Leiden clustering using 
default parameters (Fig.S6b, middle). We reasoned that different cell types and reproducible cell 
states would underly the gene expression programs defining the Leiden clusters, and that a 
good representation of cell types/states would show a high level of specificity to different 
clusters. To reflect the variability of projected scores across cell clusters we plotted a heatmap 
of cluster-wise signatures. The MetaTiME MeC scores are more specific to cell clusters 
compared to the Cluster DE signature scores (Fig.S6c, top). We further used entropy to quantify 
the  specificity of scores to clusters in the test dataset, plotting the entropy of each score 
(FigS6c, bottom). The MetaTiME MeCs generally have lower entropy compared to the Cluster 
DE scores, meaning that MetaTiME scores are less uniformly distributed across test data 
clusters compared to Cluster DE signatures. 
 
We have included a description of this analysis in the main text (lines 112-128). We have also 
added a new supplementary figure Fig.S6, and reordered the indices of other supplementary 
figures. We have added a new section in the Methods section: “Comparing MeC signatures by 
post-embedding integration, to signatures by cluster-wise differential expression.” 
 
To portray which independent components are present in which studies: we have edited the 
main text line 119 to refer to FigS4 with a coloring of cohort sources under the heatmap for all 
ICs in the heatmap columns. We have included the file with detailed independent component 
names in each MeC in our github code depository as a part of the pretrained MeCs. 
 
2. More detail should be provided in the main text regarding the IC filtering (lines 110-111), also 
which graph clustering algorithm? (put in main text that it is Louvain) 
 
Following the reviewer’s suggestion; we have edited the text on current lines 115-117 to reflect 
the method details. 
“Next, MetaTiME filters ICs to retain ones that are reproducible across multiple cohorts (the 
minimum Pearson correlation with any other IC >=0.3). These are passed to a graph clustering 
algorithm, Louvain clustering, to merge IC groups into MeCs (Methods).” This detail is also 
included in Methods section. 
 
3. Again a comparison of the annotated cell states using MetaTiME vs something like 
CCA->clusters is important. Why is MetaTiME better than taking all these datasets, integrating, 
calling clusters, and finding top marker genes for each cluster? I believe the authors can make a 
compelling case, but that case needs to be made by performing direct comparisons versus 
discussing theoretical differences in the framework alone. 
 
The new analysis comparing MetaTiME signatures with an alternative standard approach, as 
described in the response to point 1 address this point too. In this test for found that the cluster-
wise signatures are not compatible with large number of datasets, which will become 
increasingly problematic as more data accumulates. Furthermore, the cluster-wise signatures 
display lower specificity in the test data. To improve the manuscript reflecting the comparison, 
we have also edited the main text in lines 122-128. 
 



4. The comparison using Seurat->CIBERSORT, etc… for cell type annotation is useful for 
annotation of de novo datasets. It would also be helpful to include some metrics as opposed to 
qualitative observations (eg “higher-resolution”).  
 
As suggested, besides the figure comparison between MetaTiME annotation and CIBERSORT 
annotation, we have added the description of the number of annotated cell types/states in line 
201-202. “In addition, compared to the Seurat’s14 automated CIBERSORT marker-based 
annotations (14 cell types, Fig.S8a), MetaTiME provides higher resolution (38 cell states, 
Fig.3b).” 
 
5. However, was the Yost et al dataset used in the integration and training of the MeCs? If so – 
this needs to be redone with that dataset removed. Ideally a full leave-one-out analysis would 
be the best option in order to show performance on multiple datasets when those are not used 
in the training set. (If Yost et al was indeed excluded from the training dataset, it should be 
directly stated in the text) 
 
We thank the reviewer for pointing out this important point. Indeed, we did not include the cells 
from Yost et al. as shown in Figure 3. The Yost et al. data contain tumors of two cancer types, 
Squamous Cell Carcinoma (SCC) and Basal Cell Carcinoma (BCC). In the current MetaTiME, 
we used the cells from SCC tumors and excluded cells from the BCC tumors in the training. 
Thus, the “test cells” in Figure 3 are from BCC cells that were never seen by MetaTiME in the 
training steps. We have edited the text in line 196 to clarify the training-test separation. 
“We demonstrate the application of MetaTiME on basal cell carcinoma (BCC) single-cells from 
Yost et al. These test cells were excluded from the MetaTiME training stage.” 
 
6. The above comment also goes for the ICB analysis. While there is value in assessing all data 
together for better understanding ICB; using a leave-one-out to assess performance on de novo 
datasets would be valuable proof-of-principle of MetaTiME as a tool for annotation and 
assessment of new datasets. 
 
We thank the reviewer for suggesting the leave-one-out experiments. We checked whether 
further leaving out SCC from the full Yost et al. ICB dataset would have an impact on the meta-
components, we removed the SCC and performed the leave-one-out MeC calling step. We 
added a supplementary figure for the leave-one-out test. As shown in Fig. S5, MeCs called from 
the full set and the MeCs called from leave-SCC-out have high correlation and high specificity. 
There is one parameter, the minimum number of ICs in one MeC, that can affect the MeCs after 
leaving one dataset out. When keeping the number of minimum ICs in one MeC to be 5, there 
were two MeCs missing in the leave-SCC-out MeCs (Fig S5a), because of two MeCs that were 
contributed from the SCC datasets. If we reduce the minimum number of datasets supporting a 
MeC to be 4, the two missing MeCs are rescued (Fig S5b). In summary, the leave-one-out 
MeCs are highly correlated to the full-dataset MeCs based on the high correlation in both 
heatmaps (Fig S5a,b). This is an advantage brought about by the integration of a large number 
of datasets, which will not be achievable by the standard way of integrating cells due to 
limitations in computing resources and time availability. 
 
As suggested, we further performed leave-one-out tests for every dataset. We still used the 
same parameter of cluster calling resolution and the minimum IC number in one cluster to be 5. 
We used two metrics to compare each leave-one-out experiment with the full set. The first 
metric is the mean maximum correlation between leave-one-out and the full set. This is 
calculated by taking the maximum correlation, row-wise and column-wise in the correlation 
heatmap, and then take averaging. This metric reflects the strength of the correlation along the 



diagonal in the MeC correlation heatmaps. The second metric is the number of MeCs. As shown 
in FigS5c, the mean max correlation is high in each leave-one-out test (mean 
correlation=0.988). Similarly, the number of MeCs from each leave-one-out test is similar to the 
full set: mean MeC number across leave-one-out test is 84.64, close to the full set MeC number 
86. 
 
In summary, we made the following improvement of the manuscript: we added one 
supplementary figure Fig S5, edited the manuscript in line 115-120, and added one section in 
Method “MeC calling robustness with leave-dataset-out testing.” 
 
7. In the myeloid metabolic section – this is also in the void of any comparison to other 
methodologies (e.g. integration and clustering using standard methods). If the focus is the tool 
itself, then the tool needs to be directly compared to other methods and show benefit. The 
biology uncovered is interesting and there is novelty in the integration of such a large set of 
studies, but there is currently no direct evidence that it could not have been done using standard 
approaches. 
 
Similar to our response to comment 1, we added the comparison analysis to compare to a 
standard approach. In standard approaches, the number of clusters is affected by clustering 
resolution, the clustering is affected by the embedding space specific to the way of patient 
harmonization, clusters are named by picking one or two arbitrary markers, and definition of cell 
states are different across studies with minimum generalization. By integrating large set of 
studies and using unbiased combination of genes, we provide one solution of consistent 
definition of myeloid cell states.  
 
Minor: 
 
Line 57 – typo – “approach is TO use”, sentence is a bit long. Maybe just “Another approach is 
to map a dataset containing unannotated cell states onto an annotated reference” or something 
like that. 
 
We have edited the text correspondingly in line 57-59. 
 
Lots of text in the figures is too small 
 
We have increased font sizes in the following panels considering the MeC name length: Fig. 
2a,b,Fig. 3a, Fig. 4, Fig. 5. 
 
 
Reviewer #2 (Machine learning, computational analysis) (Remarks to the Author): 
 
In their manuscript "MetaTiME: Meta-components of the Tumor Immune Microenvironment", 
Zhang et al. describe a novel tool for studying the tumor microenvironment in single-cell RNA-
seq data. Studying the TME is of great importance to understand the response of the immune 
system and to inform about immunotherapy and treatment response. Single-cell RNA-seq data 
offer a wealth of information about the TME but a bottleneck in the analysis is the annotation of 
individual cell types and cell type clusters. While a plethora of methods exists for cell type 
annotation these can only offer crude annotations and rely on pre-defined marker genes, 
neglecting most of the cell-type-specific information of the transcriptome. With every new data 
set, the annotation task begins anew which is why efforts of integration and joint annotation with 
tools such as Harmony or scVI offer a joint embedding where cell clusters can be uniformly 



annotated. An limitation of this approach is that the embedding is typically started from scratch 
whenever a new dataset is added. The aim of MetaTiME is thus to obtain a stable embedding in 
which new datasets can be easily projected, thus simplifying the annotation of cell types in the 
TME. Second, MetaTiME strives for offering insights into fine-grained cell types going beyond 
classical coarse annotations, e.g. going beyond M1 and M2 subtypes for macrophages. A third 
aim is to offer a functional readout, giving insights into the activity of these fine-grained cell 
types in different data sets and tumor types. MetaTiME achieves these goals in a simple and 
elegant fashion. First, a large number (1.7 mio) of single-cells from 79 datasets spanning 
different cancer types has been collected. Malignant cells have been removed to focus on cells 
in the TME. The remaining cells were integrated using independent component analysis (ICA) 
which the authors found to outperform non-negative matrix factorization. ICA has the advantage 
that it delivers feature weights for each gene contributing to a component which allows 
measuring similarity of the components. IC vectors of individual data sets are z-scored and 
skewness aligned to become comparable. Subsequently, these are clustered to remove 
redundancy and to obtain a cross-data-set representation. This was achieved using the Louvain 
method where scores were aggregated with the mean gene scores to obtain a final set. With the 
z-scores the resulting components are easily interpretable by looking at top-scoring genes or by 
performing GSEA. New data sets can be projected (after clustering) into this space by 
computing the dot product of the gene expression values and the z-score weights of the 
components which is an elegant way of obtaining an annotation. The authors show in 
simulations and across multiple data sets that MetaTiME offers good interpretability (also by 
adding insights into regulating transcription factors through the LISA method) and a good 
resolution on cell types (and subtypes) relevant for understanding the TME. The manuscript is 
well written and easy to follow. The method is straightforward but innovative and a great 
addition for the community. I have only few comments: 
 
We thank the reviewer for carefully reading our manuscript and a constructive critique. 
 
#Major: 
1. MetaTiME offers differential signature analysis (difference of MeC component activity 
between conditions). However, it is not clear if differential abundance analysis is also supported 
(this would be going back to counting individual cells after annotation). This may be useful since 
the (relative) abundance of cell types is an important factor.  
 
We agree that differential abundance analysis of cell types is a useful analysis that is widely 
used to compare conditions. MetaTiME does have the functionality to output MeC values and  
top-most enriched cell state labels for each cell, which would facilitate cell counting based on 
independent component annotations. There are however several complications to this 
approach, requiring development of methodology that is somewhat separate from what we are 
describing. In particular, the independent component signatures do not necessarily define a 
partition of cells into clusters, as cells can be associated with more than one signature. For 
example, some cells in a sample might have the ‘CD16 monocyte’ signature as well as a 
‘macrophage IL1B’ signature and a partitioning of cells would require a classification of cells 
based on both of these signatures. We have not investigated how best to do this analysis using 
MetaTiME signatures, although it is an excellent suggestion for further research. 
 
Meanwhile, as the reviewer suggests, we have provided the function to count cell states after 
MetaTiME annotation in the toolkit. We provide example code to do quantitation of cell 
abundance depending on the cell metadata in which the user defines condition, sample, as well 
as the cell state label generated by MetaTiME annotator. Depending on the number of samples 
from a new dataset, the user can choose the testing statistics in comparing the cell abundance 



or proportions. Thus, the MetaTiME github repo and the tutorial pages are updated to include 
differential signature analysis and the cell abundance analysis. 
 
2. Most steps needed to reproduce the method are clearly explained but the GSEA analysis 
lacks details. It is not clear which exact method was used (incl. details such as the background 
used). I also wonder why only the first 100 genes were considered as GSEA naturally considers 
the ranks of all genes (in contrast to gene set overrepresentation analysis / hypergeometric test 
which is sometimes also called GSEA and should not be confused). 
 
We thank the reviewer for this suggestion regarding the GSEA analysis. Our pathway analysis 
used gseapy and enrichr to obtain hypergeometric test-based enrichment from GO-
BiologicalProcess, GO-MolecularFunction, Wikipathways, MSigDB-Hallmark, Reactome, 
Bioplanet, KEGG. We found it important to use top ranked genes like top 100 genes to compare 
to known markers, lineage transcription factors, ligand and receptors, to understand the MeCs, 
because most are about immunity that the above general pathway libraries are often not tailored 
for. Following the reviewer’s suggestion, we have added an analysis that performs GSEA 
(gseGO function from ClusterProfiler,) using all genes ranked by weights from GO, KEGG, and 
Wikipathways. We have edited the text in lines 284, 465, added the corresponding GSEA 
columns in supplementary table 1, as well as the second sheet named “MeC_enrich”. We have 
also edited Table S1 in the legend.  We have included an extra citation, Yu et al, for this 
analysis. 
 
3. To be honest I did not understand the part of the skewness of the scores. Skewness in one 
direction apparently informs about the directionality of the underlying function and the 
associated genes. At least I (probably others) would benefit from a supplementary figure where 
this is shown for a few selected examples.  
 
We thank the reviewer for pointing out this source of confusion. In our analysis of independent 
components, we found that the distributions of weights were skewed in one direction or the 
other for each of the independent components. The genes in the direction with the longer tail 
tended to be more associated with various gene set annotations. Since the direction of 
independent component is arbitrary, we used scipy.stats.skewness to test whether skewness is 
on the positive or the negative side of the z-weight distribution. To clarify how we address the 
problem of finding the sign associated with functionality of independent components, we added 
one panel to Fig.S3.  This figure illustrates skewness alignment through two examples of MeCs 
with different skewness signs, which is explained in the updated legend of Fig. S3. In the main 
text, we changed line 109 to refer to the new Fig. S3. We have also explained this in the 
Methods, line 436.  
  
4. For future research it would be an interesting perspective to check if the components inferred 
in MetaTiME could be used as a source of signatures for the deconvolution of bulk RNA-seq 
data into more fine-grained cell types. 
 
We thank the reviewer for this good suggestion about the potential application of MetaTiME on 
bulk RNA-seq data and will investigate this in the future development of MetaTiME. 
 
 
Reviewer #3 (scRNAseq, systems biology) (Remarks to the Author): 
 
Zhang et al. develop MetaTiME, a pan-cancer reference set of cellular identities and states for 
tumor microenvironment which can be used to annotate new datasets with continuous scores. 



This is an area of active research and the general concept brought forward by the authors, while 
not entirely novel conceptually is enticing. The manuscript is clearly written and the authors 
provide well written, documented and working software implementation.  However, I have a few 
concerns about the interpretation of the latent variables discovered by the authors across TMEs, 
and on how generalizable the method is for broad use by new users. 
Below I provide a series of inquiries and recommendations to the authors that hopefully will help 
improve the manuscript: 
 
We thank the reviewer for carefully reading our manuscript and for showing us ways in which it 
could be improved. 
 
# On the methodological approach: 
1. The authors show that MetaTiME provides more resolved cell labels for an existing dataset 
which I assume is also used in the ICA training of the meta-components. One issue with that is 
that given enough time or effort, the authors of the original dataset could likely have generated a 
similarly granular annotation as well. In order to demonstrate the usefulness of MetaTiME in 
annotation of a broad set of tumor data, I propose the authors work with data that has not been 
seen for training. This could be accomplished by cross validation in a leave one cancer out 
strategy, in which all but one cancer type is used in training and then the left out cancer is 
annotated for the first time. The scores for TME cells in that held out cancer can then be 
compared with the scores in the fully trained model for evaluation, and this done for every 
cancer type. A second approach would be that the authors either generate data from a new 
cancer type or use a yet unused dataset from a novel cancer 
type for this purpose. I belive this would be important to demonstrate the usefulness of 
MetaTiME in annotating datasets in a much more real situation for new users. 
 
We thank the reviewer for pointing out this important point. In our evaluation of MetaTiME we 
did not include the cells from Yost et al. as shown in Figure 3. We apologize for not explaining 
this crucial point more clearly in the main text. The Yost et al. data contain tumors of two cancer 
types, SCC and BCC. In the current MetaTiME training phase we used the cells from the SCC 
tumors and excluded cells from the BCC tumors. Thus, the “test cells” in Figure 3 are from BCC 
cells that are never seen by MetaTiME in the training steps. We have revised the text in line 195 
to clarify the training-test separation: “We demonstrate the application of MetaTiME on basal 
cell carcinoma (BCC) single-cells from Yost et al. These test cells were excluded from the 
MetaTiME training stage.”  
 
2. The authors claim batch effects are negligeble by requiring MetaTiME meta-components to 
have samples from more than one batch. This is a positive step, albeit a relatively weak one as 
it does not guarantee that the sample structure in or across datasets is still not confounded by 
non-obvious sample groupings or even incorrect experimental designs in the original datasets. 
Could the authors explicitely compute the enrichment of difffernt batches for each dataset in 
each meta-component, or complementarily do diffrential testing of meta-component scores 
between batches? This would reinforce that the discovered components reflect biology and not 
technical artifacts. 
 
We thank the reviewer for this useful suggestion. The current design requires the minimum 
number of IC in a MeC to be 5, resulting in multi-cohort resources of each MeC. We have added 
columns in TableS1 to reflect MeC size and number of cohorts in each MeC. In response to the 
reviewer’s concern, we tested if MetaTiME meta-components could be driven by single datasets 
by leaving single datasets out of the meta-component calling. We have added a systematic 
“leave-one-out” test for all datasets to assess the robustness of the meta-components.  



 
In particular, we added a supplementary figure for the leave-one-out test. As shown in Fig .S5, 
MeCs called from the full set and the MeCs called from leave-SCC-out have high correlation 
and high specificity. There is one parameter, the minimum number of ICs supporting a MeC, 
that can affect the included MeCs after leaving a single dataset out. When keeping the minimum 
number of ICs supporting a MeC as 5, there were two MeCs missing in the leave-SCC-out 
MeCs (FigS5a), these two MeCs being SCC dataset contributions. If we cut the minimum 
number of IC supporting a MeC to be 4, the two missing MeCs are rescued (Fig. S5b). In 
summary, the leave-one-out MeCs are highly correlated to the full-dataset MeCs based on the 
high correlation in both heatmaps (Fig. S5a,b). This is an advantage brought about by 
integrating a large number of datasets, which would not be achievable by standard ways of 
integrating cells, due to computing resource and time limits. 
 
As suggested, we further performed leave-one-out tests for every dataset. We still used the 
same parameter of cluster calling resolution and the minimum IC number in one cluster to be 5. 
We used two metrics to check the similarity of each leave-one-out experiment compared to the 
full set. The first metric is mean maximum correlation between leave-one-out and the full set. 
This is calculated by taking the maximum correlation, row-wise and column-wise in the 
correlation heatmap, and then averaging. This metric reflects how strong the correlation is along 
the diagonal in the MeC correlation heatmaps. The second metric is the number of MeCs. As 
shown in Fig. S5c, the mean max correlation is high in each leave-one-out test (mean 
correlation=0.988). Similarly, the number of MeCs from each leave-one-out test is similar to the 
full set: mean MeC number across leave-one-out test is 84.64, close to the full set MeC number 
86. 
 
We think that data driven approaches will be affected by data size, and the batch effects will be 
better resolved as more data are incorporated. For future research, we would recalculate 
MetaTiME when the number of datasets significantly increases, as the tumor single-cell studies 
is still expanding.  
 
In summary, we made the following improvement of the manuscript: we added one 
supplementary figure Fig. S5, edited the manuscript in line 115-120, and added one section in 
Method “MeC calling robustness with leave-dataset-out testing.” 
 
3. The authors provide no systematic validation of their interpretations of the meta-components, 
but however chose to give ample specific examples of genes enriched in signatures as 
justification for naming meta-components. While there is value in mentioning specific examples, 
the lack of a very systematic comparison of the proposed annotation for the metaclusters 
prevents the reader from assessing how good (or not so good) in general the provided 
interpretation is. It would therefore be great to assess how well the author's interpretations of 
the components' weight matches literature. One way could be for example to take the top N 
terms from each component and doing enrichment analysis with Enrichr for gene set libraries 
related with cell types, pathways, transcriptional regulators, and providing the relative 
enrichment in all of these as an additional tensor of information to be explored by the users of 
MetaTiME, and presented as validation of the manual annotation by 
the authors by observing how often each chosen term is recovered in the top enriched terms. In 
addition, it would be better if the nomenclature of the components were more systematic for 
example by always having first a broad cell type name, then a specific cellular state, as well as 
standardizing the capitalization and abbreviation (for example by not using abbreviations) of the 
meta-components. 
 



We agree with the reviewer that a more systematic analysis of the components would be 
desirable, however, on investigation of the resources available for such a comparison we found 
no dataset that could be considered a gold standard. In naming and annotating the meta-
components we tried to provide meaningful names and annotations, while also being consistent 
with accepted definitions of immunological terms. Acknowledging the limitations of our 
nomenclature we have therefore provided the significant enrichment terms from Enrichr and 
GSEA libraries in Table S1. In addition to pathway analyses used gseapy and enrichr to obtain 
hypergeometric test based enrichment from GO-BiologicalProcess, GO-MolecularFunction, 
Wikipathways, MSigDB-Hallmark, Reactome, Bioplanet, KEGG, in the revision we have added 
an analysis that performs GSEA using all genes ranked by weights from GO, KEGG, and 
Wikipathways, and edited the text in line 296, 483, and added the corresponding GSEA 
columns in supplementary table 1, the second sheet named “MeC_enrich”. We also edited 
Table S1 in the legend. 
 
However, these pathway analyses do not always provide obvious and concise names that are 
suitable for interpreting and naming the MeCs as shown in the annotator. Thus, we try to give 
short names to the MeCs. In addition to the analysis based on gene sets, we also found it 
important to use the very top ranked genes to compare to known marker genes, lineage 
transcription factors, ligands and receptors, to understand the MeCs. In immunology, factors 
such as marker genes can sometimes provide useful indications of cell type that complement 
available gene signatures libraries.  
  
To improve the naming, as suggested, we changed MeC names to follow a structure of 
“Category_Cell/State-Feature”. Category marks 7 colored categories of MeCs, 6 related to 
lineages: B for “B cell” , T for “T cells and NK cells”, DC for “Dendritic cell”, M for “Monocytes 
and macrophages”, Myeloid for “Other Myeloid types besides monocytes and macrophages”, 
Stroma for “Stromal cells”, and the last category related to pan-cell type signaling pathway: Pan 
for "Pan-cell signaling pathway". Furthermore, we have also found that the previous several 
MeCs in the “Undefined” category is driven by the most highly ranked gene, with z-weight 
significantly (10-times) higher than the second gene in z-weight ranking. They represent pan-
cell type features like ferritin activity in MeC-80 “Pan_Ferritin-FTH1”, MeC-84 “Pan_Ferritin-
FTL”, uniquitin-C activity in MeC-44 “Pan_Ubiquitin-C-UBC”, steroid induction in MeC-79: 
“Pan_Steroid-induced-TSC22D3”, actin in MeC-85 “Pan_Actin-ACTB”. Thus, we annotated all of 
the 86 MeCs. The number of annotated MeCs are thus reflected in the manuscript. 
        
The new naming is reflected in Table S1. Correspondingly, we changed the main figures: Fig1b, 
Fig2a,b,c,d, Fig3a,c,d, Fig4a,b,d, Fig5. ; the follow supplementary figures are updated: 
FigS4a,b, FigS7, FigS9 barplot, FigS10 text, FigS11d,c.   
 
# On data availability and software implementation: 
- Thank you for making the software freely available to everyone. 
- I commend the authors for the clearly documented software and availability of Jupyter 
notebooks exemplifying the usage of the software. 
- Please make sure to make available the preprocessed datasets used in creating the TME 
reference as well in a publicly acessible database (e.g. Zenodo) to enhance reproducibility of 
the manuscript and reuse of resources across the community. 
 
We agree that open-source runnable software would benefit the tumor single-cell field. As 
suggested, we have deposited processed data to Zenodo: 
https://doi.org/10.5281/zenodo.7410180.  



 
# On the figures: 
- Figure 3d is not mentioned. 
 
We have edited the text on line 200 to refer to Figure 3d about marker gene expression in cell 
states.  
 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have added substantial additional analyses that were precisely what I wanted to see to 
confirm what was already apparent regarding the advantages of MetaTiME, but needed to be fully 
fleshed out. These new analysis are very thorough and directly address my primary critiques. All of 

my minor critiques were also directly addressed and I have no further criticisms of this work. 

Reviewer #2 (Remarks to the Author): 

I'd like to thank the authors for improving the manuscript and for addressing my questions and 
comments, especially for extending Figure S3 which now perfectly clarifies how the skewness 

measure is used. I have no further concerns. 

Reviewer #3 (Remarks to the Author): 

The manuscript has considerably improved and the authors have sufficiently addressed my concerns. 
I appreciate the effort the authors made in more systematically annotating the modules and making 

the information available. 
I apologize for not recognizing the dataset in Fig 3 had not been part of the training. 

Below are a few outstanding issues that regarding consistency: 
- The methods section does include a section detailing GSEA analysis but not Enrichr using GSEApy. 

- The files containing the weights and annotation of the MECs available at https://github.com/yi-
zhang/MetaTiME/tree/main/metatime/pretrained/mec are tab-delimited but have a "txt" ending. It 

would be more intuitive to users to rename them ending in "tsv" (tab-separated values).



 
 
RESPONSE TO REVIEWER COMMENTS 
 
Point by point responses to the reviewers’ second round of comments are included below 
(reviewer comments are in blue, our responses are in black).  
 
Reviewer #1 (Remarks to the Author): 
 
The authors have added substantial additional analyses that were precisely what I wanted to 
see to confirm what was already apparent regarding the advantages of MetaTiME, but needed 
to be fully fleshed out. These new analysis are very thorough and directly address my primary 
critiques. All of my minor critiques were also directly addressed and I have no further criticisms 
of this work. 
 
We thank the reviewer for the suggestions to improve our manuscript. 
 
Reviewer #2 (Remarks to the Author): 
 
I'd like to thank the authors for improving the manuscript and for addressing my questions and 
comments, especially for extending Figure S3 which now perfectly clarifies how the skewness 
measure is used. I have no further concerns. 
 
We thank the reviewer for the suggestions to improve our manuscript and clarify concepts. 
 
 
Reviewer #3 (Remarks to the Author): 
 
The manuscript has considerably improved and the authors have sufficiently addressed my 
concerns. 
I appreciate the effort the authors made in more systematically annotating the modules and 
making the information available. 
I apologize for not recognizing the dataset in Fig 3 had not been part of the training. 
 
Below are a few outstanding issues that regarding consistency: 
- The methods section does include a section detailing GSEA analysis but not Enrichr using 
GSEApy. 
- The files containing the weights and annotation of the MECs available at https://github.com/yi-
zhang/MetaTiME/tree/main/metatime/pretrained/mec are tab-delimited but have a "txt" ending. It 
would be more intuitive to users to rename them ending in "tsv" (tab-separated values). 
 
We thank the reviewer for the suggestions to improve our manuscript and clarify the datasets 
usage.  
We have edited the methods section to reflect Enrichr and GSEApy. We have changed the file 
name in our repository and updated github. 
 
 


